guava RateLimit 接口限流工具类[推荐]

一、问题描述

某天A君突然发现自己的接口请求量突然涨到之前的10倍,没多久该接口几乎不可使用,并引发连锁反应导致整个系统崩溃。如何应对这种情况呢?生活给了我们答案:比如老式电闸都安装了保险丝,一旦有人使用超大功率的设备,保险丝就会烧断以保护各个电器不被强电流给烧坏。同理我们的接口也需要安装上“保险丝”,以防止非预期的请求对系统压力过大而引起的系统瘫痪,当流量过大时,可以采取拒绝或者引流等机制。

二、常用的限流算法

常用的限流算法有两种:漏桶算法和令牌桶算法,这篇博文介绍得比较清晰(过载保护算法浅析)。

漏桶算法思路很简单,请求先进入到漏桶里,漏桶以一定的速度出水,当水请求过大会直接溢出,可以看出漏桶算法能强行限制数据的传输速率。

图1 漏桶算法示意图
图1 漏桶算法示意图

对于很多应用场景来说,除了要求能够限制数据的平均传输速率外,还要求允许某种程度的突发传输。这时候漏桶算法可能就不合适了,令牌桶算法更为适合。如图2所示,令牌桶算法的原理是系统会以一个恒定的速度往桶里放入令牌,而如果请求需要被处理,则需要先从桶里获取一个令牌,当桶里没有令牌可取时,则拒绝服务。


图2 令牌桶算法示意图

三、限流工具类RateLimiter

google开源工具包guava提供了限流工具类RateLimiter,该类基于“令牌桶算法”,非常方便使用。该类的接口描述请参考:RateLimiter接口描述,具体的使用请参考:RateLimiter使用实践

下面是主要源码:

public double acquire() {
        return acquire(1);
    }

 public double acquire(int permits) {
        checkPermits(permits);  //检查参数是否合法(是否大于0)
        long microsToWait;
        synchronized (mutex) { //应对并发情况需要同步
            microsToWait = reserveNextTicket(permits, readSafeMicros()); //获得需要等待的时间 
        }
        ticker.sleepMicrosUninterruptibly(microsToWait); //等待,当未达到限制时,microsToWait为0
        return 1.0 * microsToWait / TimeUnit.SECONDS.toMicros(1L);
    }

private long reserveNextTicket(double requiredPermits, long nowMicros) {
        resync(nowMicros); //补充令牌
        long microsToNextFreeTicket = nextFreeTicketMicros - nowMicros;
        double storedPermitsToSpend = Math.min(requiredPermits, this.storedPermits); //获取这次请求消耗的令牌数目
        double freshPermits = requiredPermits - storedPermitsToSpend;

        long waitMicros = storedPermitsToWaitTime(this.storedPermits, storedPermitsToSpend) + (long) (freshPermits * stableIntervalMicros); 

        this.nextFreeTicketMicros = nextFreeTicketMicros + waitMicros;
        this.storedPermits -= storedPermitsToSpend; // 减去消耗的令牌
        return microsToNextFreeTicket;
    }

private void resync(long nowMicros) {
        // if nextFreeTicket is in the past, resync to now
        if (nowMicros > nextFreeTicketMicros) {
            storedPermits = Math.min(maxPermits, storedPermits + (nowMicros - nextFreeTicketMicros) / stableIntervalMicros);
            nextFreeTicketMicros = nowMicros;
        }
    }

RateLimiter 使用Demo

package ratelimite;  
  
import com.google.common.util.concurrent.RateLimiter;  
   
public class RateLimiterDemo {  
    public static void main(String[] args) {  
        testNoRateLimiter();  
        testWithRateLimiter();  
    }  
   
    public static void testNoRateLimiter() {  
        Long start = System.currentTimeMillis();  
        for (int i = 0; i < 10; i++) {  
            System.out.println("call execute.." + i);  
        }  
        Long end = System.currentTimeMillis();  
        System.out.println(end - start);  
    }  
      
    public static void testWithRateLimiter() {  
        Long start = System.currentTimeMillis();  
        RateLimiter limiter = RateLimiter.create(10.0); // 每秒不超过10个任务被提交  
        for (int i = 0; i < 10; i++) {  
            limiter.acquire(); // 请求RateLimiter, 超过permits会被阻塞  
            System.out.println("call execute.." + i); 
        }  
        Long end = System.currentTimeMillis();          System.out.println(end - start);  
    }  
      
}  

Guava版本

<dependency>
    <groupId>com.google.guava</groupId>
    <artifactId>guava</artifactId>
    <version>14.0.1</version>
</dependency>

方法摘要

http://blog.csdn.net/jiesa/article/details/50412027

http://ifeve.com/guava-ratelimiter/

发表评论

电子邮件地址不会被公开。 必填项已用*标注